Lynn Margulis on the Limits of Natural Selection
Lynn Margulis, Dorion Sagan, Acquiring Genomes: A Theory of the Origins of the Species, (Basic Books, 2003), p. 29.We agree that very few potential offspring ever survive to reproduce and that populations do change through time, and that therefore natural selection is of critical importance to the evolutionary process. But this Darwinian claim to explain all of evolution is a popular half-truth whose lack of explicative power is compensated for only by the religious ferocity of its rhetoric. Although random mutations influenced the course of evolution, their influence was mainly by loss, alteration, and refinement. One mutation confers resistance to malaria but also makes happy blood cells into the deficient oxygen carriers of sickle cell anemics. Another converts a gorgeous newborn into a cystic fibrosis patient or a victim of early onset diabetes. One mutation causes a flighty red-eyed fruit fly to fail to take wing. Never, however, did that one mutation make a wing, a fruit, a woody stem, or a claw appear. Mutations, in summary, tend to induce sickness, death, or deficiencies. No evidence in the vast literature of heredity changes shows unambiguous evidence that random mutation itself, even with geographical isolation of populations, leads to speciation. Then how do new species come into being? How do cauliflowers descend from tiny, wild Mediterranean cabbagelike plants, or pigs from wild boars?